Toxicological evaluation of zidovudine and novel chalcogen derivatives in Drosophila melanogaster

Author:

Michelotti Paula12,Gonçalves Débora F.3,Duarte Tâmie12,Sarturi Joelma M.4,Da Silva Rafael S.4,Rodrigues Oscar E. D.4,Rocha João B. T.2,Dalla Corte Cristiane L.12ORCID

Affiliation:

1. Laboratory of Biochemistry and Experimental Toxicology Federal University of Santa Maria Santa Maria Rio Grande do Sul Brazil

2. Graduate Program in Biological Sciences, Toxicological Biochemistry Federal University of Santa Maria Santa Maria Rio Grande do Sul Brazil

3. Institut NeuromyoGene (INMG)‐ UMR5310‐INSERM U1217, Faculté de Médecine Université Claude Bernard–Lyon I Lyon France

4. Department of Chemistry, LabSelen‐NanoBio Federal University of Santa Maria Santa Maria Brazil

Abstract

AbstractZidovudine (AZT) is the most commonly prescribed antiviral drug for the treatment of human immunodeficiency virus (HIV) infection. However, its chronic administration causes toxic side effects limiting its use. This study aimed to evaluate the toxicity of different concentrations of AZT and novel chalcogen derivatives (7A, 7D, 7G, 7K, 7M) on locomotion, mitochondrial dysfunction, acetylcholinesterase (AChE) activity, and production of reactive oxygen species (ROS) in adult Drosophila melanogaster. Our results show that AZT and its derivative 7K at a concentration of 10 μM impaired flies' locomotor behavior. Furthermore, AZT and the derivatives 7K, 7A, and 7M induced mitochondrial dysfunction observed by a decrease in oxygen flux through mitochondrial complexes I and II. Neither of the compounds tested affected AChE activity or ROS production in flies. According to these data, AZT derivatives presented the following decreasing order of toxicity: 7K > AZT > 7G > 7A > 7M > 7D. Based on the chemical structure, it is possible to infer that the presence of the seleno‐phenyl group in 7A and 7G increases their toxicity compared to compounds 7D and 7M. In addition, compounds 7G, 7M, and 7K with three carbon atoms as spacer were more toxic than analogs containing one carbon atom (7A and 7D). Finally, the insertion of a p‐methoxyl group enhances toxicity (7K). Based on these results, excepting 7K, all other chalcogen derivatives presented lower toxicity than AZT and are potential drug candidates.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3