A new copula regression model for hierarchical data

Author:

Akpo Talagbe Gabin1ORCID,Rivest Louis‐Paul2ORCID

Affiliation:

1. Université Laval & Institut national de la recherche scientifique (INRS) Centre Armand‐Frappier Santé Biotechnologie Laval Québec H7V 1B7 Canada

2. Department of Mathematics and Statistics Université Laval Québec G1V 0A6 Canada

Abstract

AbstractThis article proposes multivariate copula models for hierarchical data. They account for two types of correlation: one is between variables measured on the same unit, and the other is a correlation between units in the same cluster. This model is used to carry out copula regression for hierarchical data that gives cluster‐specific prediction curves. In the simple case where a cluster contains two units and where two variables are measured on each one, the new model is constructed with a ‐vine. The proposed copula density is expressed in terms of three copula families. When the copula families and the marginal distributions are normal, the model is equivalent to a normal linear mixed model with random cluster‐specific intercepts. Methods to select the three copula families and to estimate their parameters are proposed. We perform Monte Carlo studies of the sampling properties of these estimators and of out‐of‐sample predictions. The new model is applied to a dataset on the marks of students in several schools.

Funder

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3