An edge‐assisted federated contrastive learning method with local intrinsic dimensionality in noisy label environment

Author:

Wu Siyuan1ORCID,Zhang Guoming1,Dai Fei2ORCID,Liu Bowen1,Dou Wanchun12

Affiliation:

1. State Key Laboratory for Novel Software Technology Nanjing University Nanjing China

2. College of Big Data and Intelligent Engineering Southwest Forestry University Kunming China

Abstract

AbstractThe advent of federated learning (FL) has presented a viable solution for distributed training in edge environment, while simultaneously ensuring the preservation of privacy. In real‐world scenarios, edge devices may be subject to label noise caused by environmental differences, automated weakly supervised annotation, malicious tampering, or even human error. However, the potential of the noisy samples have not been fully leveraged by prior studies on FL aimed at addressing label noise. Rather, they have primarily focused on conventional filtering or correction techniques to alleviate the impact of noisy labels. To tackle this challenge, a method, named DETECTION, is proposed in this article. It aims at effectively detecting noisy clients and mitigating the adverse impact of label noise while preserving data privacy. Specially, a confidence scoring mechanism based on local intrinsic dimensionality (LID) is investigated for distinguishing noisy clients from clean clients. Then, a loss function based on prototype contrastive learning is designed to optimize the local model. To address the varying levels of noise across clients, a LID weighted aggregation strategy (LA) is introduced. Experimental results on three datasets demonstrate the effectiveness of DETECTION in addressing the issue of label noise in FL while maintaining data privacy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3