Point mutations in the voltage‐gated sodium channel gene conferring pyrethroid resistance in China populations of the Dermanyssus gallinae

Author:

Wang Penglong1ORCID,Liu Qi1,Wang Xu1,Sun Tiancong1,Liu Boxing1,Wang Bohan1,Li Huan1,Wang Chuanwen2,Sun Weiwei1,Pan Baoliang1

Affiliation:

1. National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University Beijing China

2. College of Veterinary Medicine Hebei Agricultural University Baoding China

Abstract

AbstractBACKGROUNDDermanyssus gallinae, the poultry red mite (PRM), is a worldwide ectoparasite posing significant economic challenges in poultry farming. The extensive use of pyrethroids for PRM control has led to the emergence of pyrethroid resistance. The objective of this study is to detect the pyrethroid resistance and explore its associated point mutations in the voltage‐gated sodium channel (VGSC) gene among PRM populations in China.RESULTSSeveral populations of D. gallinae, namely CJF‐1, CJP‐2, CJP‐3, CSD‐4 and CLD‐5, displayed varying degrees of resistance to beta‐cypermethrin compared to a susceptible field population (CBP‐5). Mutations of VGSC gene in populations of PRMs associated with pyrethroid resistance were identified through sequencing its fragments IIS4–IIS5 and IIIS6. The mutations I917V, M918T/L, A924G and L925V were present in multiple populations, while no mutations were found at positions T929, I936, F1534 and F1538.CONCLUSIONThe present study confirmed the presence of extremely high levels of pyrethroid resistance in PRM populations in China, and for the first time detected four pyrethroid resistance mutations in the VGSC gene. Identifying pyrethroid resistance in the field population of PRM in China can be achieved through screening for VGSC gene mutations as an early detection method. Our findings underscore the importance of implementing chemical PRM control strategies based on resistance evidence, while also considering the management of acaricide resistance in the control of PRMs. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3