Impact of partial encapsulation on the fire dynamics of an open‐plan compartment with exposed timber ceiling and columns:CodeRed #04

Author:

Kotsovinos Panagiotis1ORCID,Christensen Eirik G.1,Glew Adam1ORCID,O'Loughlin Eoin1,Mitchell Harry2,Amin Rikesh2,Robert Fabienne3,Heidari Mohammad3ORCID,Barber David4,Rein Guillermo2ORCID,Schulz Judith1

Affiliation:

1. Fire Engineering Arup London UK

2. Department of Mechanical Engineering Imperial College London London UK

3. Fire Testing Centre CERIB Épernon France

4. Fire Engineering Arup Melbourne Australia

Abstract

AbstractThe use of mass timber in construction is becoming a compelling option when faced with the high carbon footprint of traditional concrete and steel production. However, fire safety standards are yet to evolve to support these designs. Encapsulation is commonly used to protect all, or some, of the timber surfaces and reduce the risks introduced. This paper presents the results fromCodeRed #04, the final experiment of theCodeRedexperimental campaign. This experiment was carried out inside a purpose‐built facility to capture fire dynamics in large compartments with exposed timber.CodeRed #04had identical characteristics toCodeRed #01with the exception that ~50% of the cross‐laminated timber (CLT) ceiling was encapsulated. The experiments were intentionally similar to the traveling fire experiments,x‐ONEandx‐TWO, which had a non‐combustible ceiling to enable a direct comparison. The overall fire dynamics experienced inCodeRed #04, intersect the characteristics observed inCodeRed #01andx‐ONEandx‐TWO.1. InCodeRed #04, there was a delay in the ignition of the CLT ceiling as the CLT directly above the crib was encapsulated. Once the CLT ceiling ignited, the fire spread rapidly throughout the compartment. The peak heat release rate (HRR) was estimated to be approximately 100 MW, a 17% decrease fromCodeRed #01. Following CLT ignition the resulting fire duration, maximum temperatures, and heat fluxes were broadly similar toCodeRed #01. Flame heights of approximately 1.5 m were observed from the windows while flame heights of 2.5–3 m were observed inCodeRed #01. Therefore, flame heights were found to be comparable tox‐TWO.1, though over a greater number of windows, reflecting the greater extent of simultaneous burning within the compartment. The average charring depth of the exposed CLT panels was ~25 mm, which is similar to that measured inCodeRed #01‐suggesting that the fire severity near the ceiling was not strongly impacted by the 50% encapsulation of timber. No charring was observed where the ceiling was encapsulated and loaded service fixings installed through the encapsulation were found to be less likely to fail than when attached directly to the exposed timber. Smoldering was observed after the cessation of flaming and, in a few locations, was observed to progress through the thickness of the CLT panel and continue behind the encapsulation. This illustrates that, while encapsulation can succcessfully prevent flaming, it cannot be completely relied on to avoid smouldering. The findings fromCodeRed #04contribute to the development of evidence‐based fire safety design methodologies for exposed mass timber buildings.

Funder

ARUP Laboratories

Publisher

Wiley

Subject

Metals and Alloys,Polymers and Plastics,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3