Low velocity impact study of vacuum bag infused bouligand inspired composites

Author:

Amorim L.12ORCID,Santos A.1,Nunes J. P.1,Viana J. C.1

Affiliation:

1. Institute for Polymer and Composites (IPC) University of Minho Guimarães Portugal

2. Physics Centre of Minho and Porto Universities (CF‐UM‐UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies University of Minho Braga Portugal

Abstract

AbstractThis work proposes three Bouligand‐inspired layups to enhance low velocity impact (LVI) damage resistance and tolerance of convectional aircraft composite laminates. Two Bouligand‐like (HL and HL_S) and one hybrid design layup, merging conventional and Bouligand architecture (HYB), were produced by vacuum bag infusion. Their performance under LVI, at 13.5, 25 and 40 (J), and compression after impact (CAI) tests were evaluated and compared with a conventional aircraft multidirectional layup (LS) produced under identical conditions. Results demonstrated that, especially for the higher impact energy levels, both Bouligand‐like laminates consistently outperformed all the other configurations, exhibiting higher load bearing capacity (peak load) and energy absorption. Additionally, the rough and poorly defined interlaminar region of Bouligand‐like layups have showed to delay severe damage for higher loads and energies, dissipating all (at 13.5 J) or most of the impact energy (more than 50%) through subcritical damage mechanisms. Compared with LS laminate, Bouligand‐inspired layups postponed the onset of severe damage thresholds by up to 120% in load and 66% in energy (HL laminate) while developing smaller and more localized damages. The high number of fibers aligned in the loading direction of LS laminate led to better damage tolerance.Highlights Vacuum bag infused Bouligand‐like laminates consistently demonstrated superior performance than the conventional aircraft multidirectional layup, exhibiting higher load bearing capacity and energy absorption, particularly at higher impact energy levels; The rough and poorly defined interlaminar region observed in both Bouligand‐like layups demonstrated to play an essential role in the efficiency of damage mechanisms, dissipating all (at low impact energy levels) or more than 50% of impact energy on subcritical damages, such as translaminar matrix cracking; Compared with the conventional layup, HL Bouligand‐like laminate postponed 120% and 66% load and energy severe damage onset thresholds; The high number of fibers aligned in the loading direction of LS laminate led to better damage tolerance, despite the larger damaged areas observed.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3