Modification engineering of “polymer‐in‐salt” electrolytes toward high‐stability solid‐state lithium batteries

Author:

Chang Xiaotong1,Liu Kaiyue1,Jia Mengyang1,Bi Zhijie1ORCID,Guo Xiangxin1

Affiliation:

1. College of Physics Qingdao University Qingdao China

Abstract

AbstractSolid‐state lithium batteries have been regarded as a promising candidate to become the power supply for electric vehicles and smart grids due to their high energy density and reliable safety. The solid polymer electrolytes (SPEs) with light and thin features show distinctive potential in boosting the available energy density at battery level, whereas their ionic conductivity smaller than 10−4∼10−5 S cm−1 at room temperature constrains the ionic transfer kinetics, leading to low power density and short cycling life. To overcome such problem, the increase of lithium‐salt concentration over 50 wt% evokes the conversion from “salt‐in‐polymer” to “polymer‐in‐salt” (PIS) of SPEs, which can make additional ionic migration pathway and thus the improved ionic conductivity. However, the abundant lithium‐salt may also cause the reduced electrochemical window as well as mechanical properties, which restricts the compatibility with high‐voltage cathodes and lowers the operation safety. In this review, the structures and characteristics of PIS electrolytes have been elucidated through clarifying the correlation between lithium‐salt and polymer matrix. Then, the recent modification engineering progresses on PIS electrolytes are addressed from the aspects of component regulations including polymer matrices, lithium salts and fillers, novel preparation techniques, and extended application scenarios. The crucial challenges and possible research directions are finally proposed for the PIS electrolytes regarding both science and practical perspectives.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3