Building forests for the future

Author:

MacKenzie A. Robert12,Ullah Sami12,Foyer Christine H.23ORCID

Affiliation:

1. School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham UK

2. Birmingham Institute of Forest Research University of Birmingham Birmingham UK

3. School of Biosciences, College of Life and Environmental Sciences University of Birmingham Edgbaston UK

Abstract

AbstractMany governments have set ambitious targets for tree planting and increased woodland cover as a key part of actions to reach net‐zero carbon emissions by 2050. However, many uncertainties remain concerning how and where to expand tree cover, what species to plant, and how best to manage new plantations. Much contemporary forestry has been based on even‐aged monocultures, largely because of perceived advantages for timber production. However, in order to play a key role in climate change mitigation future forests will have to achieve timber production (and wider ecosystem service provision) alongside resilience to biotic and abiotic challenge. It is therefore crucial that appropriate informed decisions are made with regard to the structure, composition, and planning of future forests, in order to provide sustainable solutions that provide environmental, economic, and health benefits to society. Genetically diverse, mixed, and irregular forests, with their higher biodiversity and niche complementarity, are promising new forest configurations for regulating the water cycle, storing carbon, and delivering other goods and services. In the following discussion, we have used UK information to illustrate the benefits of mixed woodland versus monocultures and highlighted current issues related to government initiatives and policies for current and future forests. However, similar issues and problems are encountered globally.

Funder

Natural Environment Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3