Affiliation:
1. Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China
2. Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology Hangzhou People's Republic of China
Abstract
AbstractNitrilase‐mediated bioprocesses exhibited great potential in the production of value‐added carboxylic acids. However, poor thermostability of nitrilases usually restricts their industrial applications. Herein, the thermostability of nitrilase BaNITM0 was significantly improved by engineering the amino acid residues on the intersection of two dimers (C interface). Except for simultaneous enhancement of enantioselectivity and activity, the best variant V82L/M127I/L159M/F166Q/C237S/Q260H (BaNITM4) showed a 10.8‐fold increase in half‐life at 30°C compared with BaNITM0. Structural analysis demonstrated that additional hydrogen bonds were formed between the residues on the C interface, which strengthened the interactions of two symmetrical regions and spirals. Subsequently, the engineered nitrilase was immobilized onto epoxy resins LXTE‐603 and the immobilized nitrilase exhibited excellent stability over 12 repeated cycles, which indicated a great industrial potential for biosynthesis of Pregabalin precursor.
Funder
National Natural Science Foundation of China
Program for Changjiang Scholars and Innovative Research Team in University
Zhejiang Provincial Outstanding Youth Science Foundation
Subject
General Chemical Engineering,Environmental Engineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献