An analytical frequency‐domain model of aerodynamic mass and damping of floating wind turbines

Author:

Yang Can12ORCID,Xiao Longfei12,Chen Peng12,Cheng Zhengshun12ORCID,Liu Mingyue12,Liu Lei12

Affiliation:

1. State Key Laboratory of Ocean Engineering Shanghai Jiao Tong University (SJTU) Shanghai China

2. SJTU‐Sanya Yazhou Bay Institute of Deepsea Science and Technology Sanya China

Abstract

AbstractThe fore‐aft motion of the rotor‐nacelle assembly (RNA) of a rotating floating wind turbine (FWT) can cause an oscillation in aerodynamic thrust, which may be equivalently treated as frequency‐dependent aerodynamic mass and damping effects. In this study, an explicit frequency‐domain analytical model is proposed to calculate the equivalent aerodynamic mass and damping of FWTs, with proper linearization of control system. Assuming that an FWT operates under steady wind conditions and a forced oscillation is exerted at the RNA along the wind direction, the thrust fluctuations are equivalently represented by the force and moment acting on the nacelle instead of pure aerodynamic loads. Based on the thrust oscillation expression, equivalent aerodynamic mass and damping are derived analytically. After verifying the model by numerical comparison, it is used to demonstrate equivalent aerodynamic mass and damping of three wind turbines (5–15 MW). Effects of wind turbine up‐scaling and controller dynamics are addressed. Results show that equivalent aerodynamic mass and damping present a nonlinear characteristic with oscillation frequency in the below‐rated region, while the relationship is close to linear for higher wind speeds. The effect of wind turbine up‐scaling has a visible impact on equivalent aerodynamic mass and damping, especially at near‐rated wind speed. Controller gains affect equivalent aerodynamic mass and damping and should be tuned reasonably in the controller design for FWTs. Outcomes of our study can be used to establish a frequency‐domain coupled model of FWTs and are beneficial for conceptual design and parameter optimization of the platform of FWTs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3