Affiliation:
1. Department of Neurology University Hospital Zurich, University of Zurich Zurich Switzerland
2. Neuroscience Center Zurich (ZNZ) University of Zurich and ETH Zurich Zurich Switzerland
Abstract
AbstractTo optimize performance during vital tasks, animals are capable of tuning rhythmic neural signals that drive repetitive behaviors, such as motor reflexes under constant sensory stimuli. In the oculomotor system, animals track the moving image during slow phases while repetitively resetting the eye position from the eccentricity during quick phases. During optokinetic response (OKR), larval zebrafish occasionally show a delayed quick phase; thus, the eyes remain tonically deviated from the center. In this study, we scrutinized OKR in larval zebrafish under a broad range of stimulus velocities to determine the parametric property of the quick‐phase delay. A prolonged stimulation revealed that the slow‐phase (SP) duration—the interval between two quick phases—was tuned increasingly over time toward a homeostatic range, regardless of stimulus velocity. Attributed to this rhythm control, larval zebrafish exhibited a tonic eye deviation following slow phases, which was especially pronounced when tracking a fast stimulus over an extended time period. In addition to the SP duration, the fixation duration between spontaneous saccades in darkness also revealed a similar adaptive property after the prolonged optokinetic stimulation. Our results provide a quantitative description of the adaptation of rhythmic eye movements in developing animals and pave the way for potential animal models for eye movement disorders.
Funder
EMDO Stiftung
Inselspital, Universitätsspital Bern
Subject
Cellular and Molecular Neuroscience