Limiting resources for soil microbial growth in climate change simulation treatments in the subarctic

Author:

Yuan Mingyue1ORCID,Na Meng12,Hicks Lettice C.1ORCID,Rousk Johannes1ORCID

Affiliation:

1. Section of Microbial Ecology, Department of Biology Lund University Lund Sweden

2. School of Forestry Northeast Forestry University Harbin China

Abstract

AbstractThe microbial use of resources to sustain life and reproduce influences for example, decomposition and plant nutrient provisioning. The study of “limiting factors” has shed light on the interaction between plants and their environment. Here, we investigated whether carbon (C), nitrogen (N), or phosphorus (P) was limiting for soil microorganisms in a subarctic tundra heath, and how changes in resource availability associated with climate change affected this. We studied samples in which changes in resource availability due to climate warming were simulated by the addition of birch litter and/or inorganic N. To these soils, we supplied factorial C (as glucose), N (as NH4NO3), and P (as KH2PO4/K2HPO4) additions (“limiting factor assays,” LFA), to determine the limiting factors. The combination of C and P induced large growth responses in all soils and, combined with a systematic tendency for growth increases by C, this suggested that total microbial growth was primarily limited by C and secondarily by P. The C limitation was alleviated by the field litter treatment and strengthened by N fertilization. The microbial growth response to the LFA‐C and LFA‐P addition was strongest in the field‐treatment that combined litter and N addition. We also found that bacteria were closer to P limitation than fungi. Our results suggest that, under a climate change scenario, increased C availability resulting from Arctic greening, treeline advance, and shrubification will reduce the microbial C limitation, while increased N availability resulting from warming will intensify the microbial C limitation. Our results also suggest that the synchronous increase of both C and N availability might lead to a progressive P limitation of microbial growth, primarily driven by bacteria being closer to P limitation. These shifts in microbial resource limitation might lead to a microbial targeting of the limiting element from organic matter, and also trigger competition for nutrients between plants and microorganisms, thus modulating the productivity of the ecosystem.

Funder

Knut och Alice Wallenbergs Stiftelse

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3