Swing‐out opening of stromal interaction molecule 1

Author:

Horvath Ferdinand1ORCID,Berlansky Sascha2,Maltan Lena2ORCID,Grabmayr Herwig2ORCID,Fahrner Marc2ORCID,Derler Isabella2ORCID,Romanin Christoph2ORCID,Renger Thomas1ORCID,Krobath Heinrich1ORCID

Affiliation:

1. Department for Theoretical Biophysics Johannes Kepler University Linz Linz Austria

2. Institute of Biophysics Johannes Kepler University Linz Linz Austria

Abstract

AbstractStromal interaction molecule 1 (STIM1) resides in the endoplasmic reticulum (ER) membrane and senses luminal calcium (Ca2+) concentration. STIM1 activation involves a large‐scale conformational transition that exposes a STIM1 domain termed “CAD/SOAR”, ‐ which is required for activation of the calcium channel Orai. Under resting cell conditions, STIM1 assumes a quiescent state where CAD/SOAR is suspended in an intramolecular clamp formed by the coiled‐coil 1 domain (CC1) and CAD/SOAR. Here, we present a structural model of the cytosolic part of the STIM1 resting state using molecular docking simulations that take into account previously reported interaction sites between the CC1α1 and CAD/SOAR domains. We corroborate and refine previously reported interdomain coiled‐coil contacts. Based on our model, we provide a detailed analysis of the CC1‐CAD/SOAR binding interface using molecular dynamics simulations. We find a very similar binding interface for a proposed domain‐swapped configuration of STIM1, where the CAD/SOAR domain of one monomer interacts with the CC1α1 domain of another monomer of STIM1. The rich structural and dynamical information obtained from our simulations reveals novel interaction sites such as M244, I409, or E370, which are crucial for STIM1 quiescent state stability. We tested our predictions by electrophysiological and Förster resonance energy transfer experiments on corresponding single‐point mutants. These experiments provide compelling support for the structural model of the STIM1 quiescent state reported here. Based on transitions observed in enhanced‐sampling simulations paired with an analysis of the quiescent STIM1 conformational dynamics, our work offers a first atomistic model for CC1α1‐CAD/SOAR detachment.

Funder

Austrian Science Fund

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of STIM1 in stretch-induced signaling in human airway smooth muscle;American Journal of Physiology-Lung Cellular and Molecular Physiology;2024-08-01

2. Essential role of N-terminal SAM regions in STIM1 multimerization and function;Proceedings of the National Academy of Sciences;2024-05-16

3. Insights into the dynamics of the Ca2+ release-activated Ca2+ channel pore-forming complex Orai1;Biochemical Society Transactions;2024-03-25

4. Interactions between calcium regulatory pathways and mechanosensitive channels in airways;Expert Review of Respiratory Medicine;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3