Ultra‐high‐field pharmacological functional MRI of dopamine D1 receptor‐related interventions in anesthetized rats

Author:

Kimura Yuka12ORCID,Nakazawa Shunsuke1,Nishigori Kantaro1,Mori Yuki34,Ichihara Junji1,Yoshioka Yoshichika34

Affiliation:

1. Drug Development Research Laboratories Sumitomo Dainippon Pharma Co Ltd Osaka Japan

2. Graduate School of Science and Technology, Division of Information Science Nara Institute of Science and Technology (NAIST) Ikoma Japan

3. Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology Osaka University Osaka Japan

4. Biofunctional Imaging Laboratory, Immunology Frontier Research Center (IFReC) Osaka University Osaka Japan

Abstract

AbstractThe dopamine D1 receptor (D1R) is associated with schizophrenia, Parkinson's disease, and attention deficit hyperactivity disorder. Although the receptor is considered a therapeutic target for these diseases, its neurophysiological function has not been fully elucidated. Pharmacological functional MRI (phfMRI) has been used to evaluate regional brain hemodynamic changes induced by neurovascular coupling resulting from pharmacological interventions, thus phfMRI studies can be used to help understand the neurophysiological function of specific receptors. Herein, the blood oxygenation level‐dependent (BOLD) signal changes associated with D1R action in anesthetized rats was investigated by using a preclinical ultra‐high‐field 11.7‐T MRI scanner. PhfMRI was performed before and after administration of the D1‐like receptor agonist (SKF82958), antagonist (SCH39166), or physiological saline subcutaneously. Compared to saline, the D1‐agonist induced a BOLD signal increase in the striatum, thalamus, prefrontal cortex, and cerebellum. At the same time, the D1‐antagonist reduced the BOLD signal in the striatum, thalamus, and cerebellum by evaluating temporal profiles. PhfMRI detected D1R‐related BOLD signal changes in the brain regions associated with high expression of D1R. We also measured the early expression of c‐fos at the mRNA level to evaluate the effects of SKF82958 and isoflurane anesthesia on neuronal activity. Regardless of the presence of isoflurane anesthesia, c‐fos expression level was increased in the region where positive BOLD responses were observed with administration of SKF82958. These findings demonstrated that phfMRI could be used to identify the effects of direct D1 blockade on physiological brain functions and also for neurophysiological assessment of dopamine receptor functions in living animals.

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3