Affiliation:
1. Key laboratory of Bio‐based Material Science and Technology of Ministry of Education, School of Materials Science and Engineering Northeast Forestry University Harbin China
2. School of Automation Harbin University of Science and Technology Harbin China
Abstract
AbstractIt is crucial and significant to boost the utilization of renewable resources and exploitation of biodegradable materials alternative to petrochemical plastics. Waste paper, mainly composed of cellulose (82–95 wt%) and derived from the lignocellulose, is a type of abundant, renewable, and biodegradable resource, whose recycling use and conversion to high value‐added products can reduce the pressure on the environment and exert immense economic benefits. Herein, four kinds of common waste paper (e.g., printing paper, newspaper, straw paper and roll paper) were converted into cellulose‐based bioplastic membranes by using ionic liquid 1‐butyl‐3‐methyl‐imidazolium chloride as solvent. The cellulose‐based membranes are smooth and compact, and their mechanical strength is prominently improved about 3–100 times comparison with the original paper. The maximum tensile strength of the film (F4) is over 127 Mpa and its optical transmittance reaches 80% at 450–800 nm wavelength. Besides, this kind of cellulose‐based films have excellent biodegradability. Thus, the results demonstrated that the cellulose‐based bioplastic membranes stemmed from waste paper possess a magnificent application prospect.
Funder
Fundamental Research Funds for the Central Universities
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献