Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction

Author:

Wang Mingwei1,Hu Zhiyi1,Lv Jieheng1,Yin Zhiwen1,Xu Zhewei1,Liu Jingfeng1,Feng Shihao1,Wang Xiaoqian1,He Jiazhen1,Luo Sicheng1,Zhao Dafu1,Li Hang1,Luo Xuemin1,Liu Qi1,Liu Damin1,Su Baolian12ORCID,Zhao Dongyuan3,Liu Yong1ORCID

Affiliation:

1. International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China

2. Department of Chemistry, Laboratory of Inorganic Materials Chemistry University of Namur Namur Belgium

3. Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai China

Abstract

AbstractCompositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3