Enhancing coal slime processing: Investigating the efficacy of sodium dodecyl sulfonate in the adsorption on kaolinite surfaces

Author:

Lu Fangqin1,Liu Lingyun12,Kong Chuilei1,Zhao Hongyu13

Affiliation:

1. Department of Materials Science and Engineering Anhui University of Science and Technology Huainan China

2. Joint National‐Local Engineering Research Centre for Safe and Precise Coal Mining Huainan China

3. School of Civil and Resource Engineering University of Science & Technology Beijing Beijing China

Abstract

AbstractAddressing the issue of processing fine kaolinite and quartz particles in coal slime, this study utilized molecular simulation and Density Functional Theory (DFT) to investigate the chelate adsorption characteristics of sodium dodecyl sulfate (SDS) on kaolinite surfaces. As a major clay mineral component in coal slime, kaolinite reduces coal's calorific value but holds potential for industrial and agricultural applications. The research identified distinct interactions between SDS and the tetrahedral SiO layer and octahedral AlO layer of kaolinite, in contrast to quartz, which contains only the tetrahedral SiO layer. This difference is crucial for the effective separation of kaolinite from quartz. The study focused on analyzing SDS adsorption on the (001) and (00‐1) planes of kaolinite. The findings revealed strong adsorption of SDS on kaolinite surfaces, especially on the (001) plane, evidenced by significant charge transfer indicating efficient chelation. This effect results from the interaction of SDS's electron‐donating atoms (such as S and O) with the metal atoms on the surface of kaolinite. Adsorption strength was quantified through adsorption energy calculations, showing a stronger interaction on the (001) surface. Experimental validations, including single mineral flotation experiments and infrared spectroscopic analysis, further corroborated the simulation outcomes. These tests demonstrated improved flotation recovery of kaolinite in the presence of SDS and with reduced particle size. Infrared analysis revealed that SDS selectively and strongly adsorbs on kaolinite surfaces, as indicated by diminished hydroxyl group stretching vibrations in the FTIR spectrum and changes in absorption peaks related to inorganic vibrations and sulfonic acid groups. The study demonstrates that SDS can selectively and effectively adsorb onto kaolinite surfaces, particularly on the (001) plane, facilitating the efficient extraction of fine kaolinite from coal slime. This research holds significant potential for enhancing the utilization of resources from coal slime in the coal industry, offering both economic and environmental benefits.

Funder

National Natural Science Foundation of China

Anhui University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3