The use of weakly supervised machine learning for necrosis assessment in patients with osteosarcoma: A pilot study

Author:

LiBrizzi Christa L.1,Wang Zhenzhen2,Sulam Jeremias2,James Aaron W.3,Levin Adam S.1ORCID,Morris Carol D.4

Affiliation:

1. Department of Orthopaedic Surgery Division of Orthopaedic Oncology, The Johns Hopkins University School of Medicine Baltimore Maryland USA

2. Department of Biomedical Engineering The Johns Hopkins University School of Medicine Baltimore Maryland USA

3. Department of Pathology The Johns Hopkins University School of Engineering Baltimore Maryland USA

4. Orthopaedic Surgery Memorial Sloan‐Kettering Cancer Center New York New York USA

Abstract

AbstractPercent necrosis (PN) following chemotherapy is a prognostic factor for survival in osteosarcoma. Pathologists estimate PN by calculating tumor viability over an average of whole‐slide images (WSIs). This non‐standardized, labor‐intensive process requires specialized training and has high interobserver variability. Therefore, we aimed to develop a machine‐learning model capable of calculating PN in osteosarcoma with similar accuracy to that of a musculoskeletal pathologist. In this proof‐of‐concept study, we retrospectively obtained six WSIs from two patients with conventional osteosarcomas. A weakly supervised learning model was trained by using coarse and incomplete annotations of viable tumor, necrotic tumor, and nontumor tissue in WSIs. Weakly supervised learning refers to processes capable of creating predictive models on the basis of partially and imprecisely annotated data. Once “trained,” the model segmented areas of tissue and determined PN of the same six WSIs. To assess model fidelity, the pathologist also estimated PN of each WSI, and we compared the estimates using Pearson's correlation and mean absolute error (MAE). MAE was 15% over the six samples, and 6.4% when an outlier was removed, for which the model inaccurately labeled cartilaginous tissue. The model and pathologist estimates were strongly, positively correlated (r = 0.85). Thus, we created and trained a weakly supervised machine learning model to segment viable tumor, necrotic tumor, and nontumor and to calculate PN with accuracy similar to that of a musculoskeletal pathologist. We expect improvement can be achieved by annotating cartilaginous and other mesenchymal tissue for better representation of the histological heterogeneity in osteosarcoma.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3