Critical liquefied soil thickness for response patterns of piles in inclined liquefied ground overlain by nonliquefied crust

Author:

Chiou Jiunn‐Shyang1ORCID,Hsu Yuan‐Man1,Ho Cheng‐En1

Affiliation:

1. Department of Civil Engineering National Taiwan University Taipei Taiwan, ROC

Abstract

AbstractLateral spreading has historically caused extensive pile failure in liquefaction‐prone areas during strong earthquakes. A critical design scenario involves piles embedded in lateral spreading ground composed of a nonliquefied soil crust overlying a liquefied layer; it is critical because both layers can exert loads on the piles. Different thicknesses of the liquefied soil and the upper nonliquefied crust may engender different pile response patterns. Accordingly, to investigate factors influencing the lateral responses of a single pile embedded in liquefied ground with a nonliquefied crust, we conduct parametric analyses. The effects of liquefied and nonliquefied soil thicknesses are analyzed first, followed by those of pile‐head rotational restraint, pile diameter, and lateral spreading displacement. We observe two main pile response patterns for various liquefied soil thicknesses. The ground can be categorized into thin or thick liquefied ground depending on whether its liquefied soil thickness is less or greater than a critical value, namely, critical liquefied soil thickness; this critical thickness is dependent on the pile‐head rotational restraint, pile diameter, and lateral spreading displacement. The difference in the patterns stems from the varying roles of the upper nonliquefied soil layer during lateral spreading. For the thin liquefied ground, the nonliquefied layer contributes to adding lateral spreading force; therefore, the displacement, moment, and shear force responses of the pile increase with the nonliquefied soil thickness. However, for the thick liquefied ground, the nonliquefied layer provides resistance to lateral spreading; therefore, the maximum displacement, moment, and shear force of the pile initially decreases and then gradually increases with the nonliquefied soil thickness.

Funder

National Science and Technology Council

National Taiwan University

Publisher

Wiley

Reference37 articles.

1. LIQUEFACTION-INDUCED GROUND DISPLACEMENT AND ITS RELATED DAMAGE TO LIFELINE FACILITIES

2. EFFECTS OF LIQUEFACTION-INDUCED GROUND DISPLACEMENTS ON PILE PERFORMANCE IN THE 1995 HYOGOKEN-NAMBU EARTHQUAKE

3. YasudaS BerrillJB Observations of the earthquake response of foundations in soil profiles containing saturated sands.Proceedings 1st International Conference on Geotechnical and Geological Engineering Melbourne Australia;2000:1441‐1470.

4. Case study of lateral spreading forces on a piled foundation

5. Earthquake-Induced Liquefaction around Marine Structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3