Residual compressive strength of polyamide fiber‐reinforced epoxy composites after low‐velocity impact

Author:

Coskun Taner1ORCID,Yar Adem2,Demir Okan1ORCID,Sahin Omer Sinan1

Affiliation:

1. Department of Mechanical Engineering Konya Technical University Konya Turkey

2. Department of Mechanical Engineering Bingöl University Bingöl Turkey

Abstract

AbstractIn this study, polyamide fibers, which stand out with their excellent plastic deformation and energy absorption capacity, were used as reinforcement materials, and in‐house manufactured composite specimens were subjected to low‐velocity impact (LVI), compression after impact (CAI) and tensile tests. Within this scope, one and two repeated drop tests were performed under 3 m/s velocity to determine LVI responses and how impact number affects the dynamic properties. CAI tests were also performed at a 1 mm/min crosshead speed, and mechanical properties for non‐impacted, one‐impacted, and two‐impacted specimens were determined. As a result of the outstanding plastic deformation capacity of thermoplastic fabrics, it is concluded that polyamide composites exhibited quite large strains. Furthermore, it was understood from the tensile responses that tensile stresses were carried by the thermoplastic fibers in two different regimes and significantly high toughness was obtained. Moreover, reductions in the maximum compression loads, critical buckling loads and axial stiffness were observed due to degradation in structural integrity after impact loads. Additionally, the utilization of recyclable thermoplastic polyamide fibers as reinforcement material instead of conventional reinforcement materials such as carbon and glass fibers provide more environmentally friendly products.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3