Development of high‐throughput wet‐chemical synthesis techniques for material research

Author:

Chen Zhuyang1,Lu Dongdong2,Cao Jinwei1,Zhao Fu3,Feng Guang1,Xu Chen3ORCID,Deng Yonghong1,Xiang X.‐D.1

Affiliation:

1. School of Materials Science and Engineering Southern University of Science and Technology Shenzhen China

2. School of Physical Sciences Great Bay University Dongguan China

3. Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen China

Abstract

AbstractCombining material big data with artificial intelligence constitutes the fourth paradigm of material research. However, the sluggish development of high‐throughput (HT) experimentation has resulted in a lack of experimentally verified and validated material data, which has become the bottleneck of data‐driven material research. Wet‐chemical synthesis has the benefits of low equipment cost and scalability, but traditional wet‐chemical techniques are time‐consuming and ineffective at disclosing the interrelationships between synthesis, compositions, structures, and performance. Constructing a HT workflow in wet‐chemical synthesis is crucial to achieving the preparation of multidimensional materials and establishing the composition–structure–synthesis–performance relationships of functional materials for diverse applications. In this review, the most recent development in HT wet‐chemical synthesis techniques for material research are analyzed in depth. Additionally, the application of HT wet‐chemical synthesis in the fabrication of advanced hydrogels and catalysts is demonstrated through illustrative instances. Finally, this review suggests possible paths for enhancing the efficiency of HT experimentation and data acquisition in order to facilitate more effective material discovery.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3