Nickel sulfide and potato‐peel‐derived carbon spheres composite for high‐performance asymmetric supercapacitor electrodes

Author:

Sheoran Mahima1,Sharma Rohit1,Dawar Anit2,Ojha Sunil2,Srivastav Anurag3,Sharma R K4,Sinha Om Prakash1ORCID

Affiliation:

1. Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India

2. Inter University Accelerator Center New Delhi India

3. Atal Bihari Vajpayee‐Indian Institute of Information Technology and Management Gwalior India

4. Raja Ramanna Centre for Advanced Technology Indore India

Abstract

AbstractIn the present work, a novel composite of nickel sulfide (NiS) and potato peel‐derived carbon spheres (NiS/PPCS) with higher specific capacitance and cyclic performance was synthesized as electrode material for supercapacitor applications. The composite was deposited on a graphite rod to be use as an electrode. The electrochemical performance studies using CV, GCD, and EIS revealed that the prepared electrode showed an improved current response and higher specific capacitance than the pristine NiS electrode. The maximum specific capacitance for the NiS/PPCS electrode was found to be 2185 F/g at 0.2 A/g current density. More precisely, it was observed that the NiS/PPCS composite exhibited an excellent retention capacity of 95.04% after 20 000 continuous charge‐discharge cycles, showing its exceptional cyclic performance. The impedance studies revealed that the reaction between the NiS/PPCS electrode and electrolyte was rapid and highly reversible. Based on the findings of the electrochemical performances, NiS/PPCS electrode appears to be a potential candidate for highly efficient and economical asymmetric supercapacitors.

Funder

Ministry of Earth Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3