Affiliation:
1. Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry Hainan University Haikou China
2. Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources Chinese Academy of Tropical Agricultural Sciences Haikou China
Abstract
AbstractBACKGROUNDTelosma mosaic virus (TelMV, Potyvirus, Potyviridae) is an emerging viral pathogen that threatens passion fruit plantations worldwide. However, an efficient strategy for controlling such a virus is not yet available. Cross protection is a phenomenon in which pre‐infection of a plant with one mild strain prevents or delays subsequent infection by the same or closely related virus. HC‐Pro is the potyviral encoded multifunctional protein involved in several steps of viral infection, including multiplication, movement, transmission and RNA silencing suppression. In this study, we tested whether it is possible to generate attenuated viral strains capable of conferring protection against severe TelMV infection by manipulating the HC‐Pro gene.RESULTSBy introducing point mutation into the conserved motif FRNK of HC‐Pro that is essential for RNA silencing suppression, we have successfully obtained three attenuated mutants of TelMV (R181K, R181D, and R181E, respectively). These attenuated TelMV mutants could systemically infect passion fruit plants without noticeable symptoms. Pre‐inoculation of one of these attenuated mutants confers efficient protection against subsequent infection by severe TelMV strain. Moreover, we demonstrated that the HC‐Pros harbored by the attenuated mutants exhibit reduced RNA silencing suppression activity in Nicotiana benthamiana leaves.CONCLUSIONThe attenuated TelMV mutants developed in this study that are suitable for cross protection offer a practical, powerful tool to fight against TelMV for sustainable passion fruit production. © 2024 Society of Chemical Industry.
Funder
Natural Science Foundation of Hainan Province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献