Exosomes secreted from induced pluripotent stem cell ameliorate the lipopolysaccharide induced neuroinflammatory response via lncRNA‐0949

Author:

Ma Lixiu12,Xiao Ce12,Zhang Zhizhe12,Zhan Yi‐an12ORCID

Affiliation:

1. Department of Respiratory and Critical Care Medicine the First Affiliated Hospital of Nanchang University Nanchang Jian People's Republic of China

2. Department of Respiratory and Critical Care Medicine Nanchang Jiangxi Province People's Republic of China

Abstract

AbstractPurposeTo study the effect of exosomes derived from the induced pluripotent stem cells (iPSCs) in the neuroinflammatory response of microglia caused by lipopolysaccharide (LPS) and reveal the potential underlying mechanism.MethodsA permanent microglia cell line HMO6 was activated by LPS. The features of exosomes were analyzed by nano flow cytometry, Western blot and transmission electron microscope. The RNA‐seq was used to analyze the difference of noncoding RNA profiles between iPSC‐Exos and HMO6 derived exosomes and proved that long no‐coding RNA (lncRNA‐0949) was highly expressed in the iPSC‐Exos. Activated HMO6 cells were cocultured with iPSC‐Exos in which lncRNA‐0949 was overexpressed, knocked down or normally expressed. Quantitative real‐time polymerase chain reaction (RT‐qPCR), Enzyme‐Linked Immunosorbent Assay and Western blot assay were adopted to analyze RNA and protein expression of inflammatory factors in HMO6 cells.ResultsThe oxidative stress and inflammatory response of microglia were significantly attenuated with the iPSC derived exosomes treatment. LncRNA‐0949 was effectively delivered into the HMO6 cells through the iPSC‐Exos, which largely alleviated the production of malondialdehyde, IL‐6, IL‐1β and TNF‐α in HMO6 cells. Overexpression of lncRNA‐0949 could enhance the anti‐inflammatory effect of the iPSC‐Exos, and knock‐down of lncRNA‐0949 impaired this availability.ConclusionAccording to our results, lncRNA‐0949 enriched exosomes from iPSC could potentially be used as a therapeutic strategy to prevent/treat neuroinflammatory diseases.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3