Advancing CO2 to CO conversion: Detailed impact analysis of atmospheric molecules in an ultrashort pulse laser filament plasma reactor

Author:

Wang Luping1,Deng Lunhua1ORCID,Huang Qian1,Qiu Xuanbing2,Li Chuanliang2,Zhang Sanjun1

Affiliation:

1. State Key Laboratory of Precision Spectroscopy East China Normal University Shanghai China

2. School of Applied Science Taiyuan University of Science and Technology Taiyuan China

Abstract

AbstractCapturing carbon dioxide (CO2) and transforming it into valuable fuels offers a dual benefit: the potential to reduce atmospheric CO2 levels and decrease our dependency on fossil fuels. Plasma‐assisted CO2 to carbon monoxide (CO) conversion stands out within the various CO2 recycling methods, with research primarily emphasizing its energy efficiency and conversion efficacy. However, investigations of CO2 conversion under real air conditions are relatively scarce, and the effects of the other atmospheric molecules on the CO2 conversion process require further exploration. We have induced plasma chemical reactions by generating ultrashort pulse laser filaments inside a sealed‐off cavity with variable air pressures. Simultaneously, we applied mid‐infrared laser absorption spectroscopy to monitor the time evolution of the reaction products. The peak CO2‐to‐CO conversion ratio was achieved at an air pressure of 8000 Pa, which resulted in a CO concentration of 82 ppm. The experimental results suggested that nitrogen (N2) plays a promoting role in CO2‐to‐CO conversion, while the presence of oxygen (O2) seems to hinder the process. The hydroxyl radical (OH) arising from water molecules (H2O) limits the accumulation of CO at lower air pressures. However, at higher air pressures, the reduced OH radical concentration shows negligible impact on the CO2‐to‐CO conversion ratios. In addition, the study revealed that atmospheric plasmas produce a high concentration of hydrogen cyanide (HCN), which is directly proportional to the levels of ambient humidity. This research contributes to the development of strategies to mitigate the production of harmful gases like HCN in CO2 conversion, thereby promoting the ecofriendly conversion of atmospheric CO2.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3