Quantification of fabric evolution in granular material under cyclic loading

Author:

Mo Weibin1,Wang Rui1ORCID,Zhang Jian‐Min1,Dafalias Yannis F.234

Affiliation:

1. Department of Hydraulic Engineering State Key Laboratory of Hydroscience and Engineering Tsinghua University Beijing China

2. Department of Civil and Environmental Engineering University of California Davis California USA

3. Department of Mechanics School of Applied Mathematical and Physical Sciences National Technical University of Athens Zographou, Hellas Athens Greece

4. Institute of Thermomechanics Czech Academy of Sciences Praha Czech Republic

Abstract

AbstractFabric influences the macro scale mechanical properties and behavior of granular materials as a continuum and can be represented by an appropriately defined evolving fabric tensor entering the constitutive equations. In this study, the evolution of fabric tensors under cyclic loading is investigated and quantified by a series of cyclic loading DEM tests. Simulations of the DEM data are made by two different continuum evolution rate equations for the contact normal‐based fabric tensor, both within the Anisotropic Critical State Theory (ACST) framework: the first, is a Basic Fabric Evolution (BFE) equation and the second, is a novel Combined Fabric Evolution (CFE) equation, where a quantity related to particle‐based fabric tensor is considered. The comparison with DEM results highlights the capability of the CFE equation in simulating fabric evolution under cyclic loading for different anisotropy, density, and loading conditions. In addition, such simulations are significantly more accurate in comparison with those obtained by the BFE equation. The reason for the superiority of CFE over the BFE is the incorporation of the influence of the particle orientation fabric on contact normal fabric evolution. Analytical evaluation of CFE further identifies a total of seven periodic stable contact normal fabric evolution patterns that exist under cyclic loading, governed by initial void ratio, intensity of anisotropy, and stress amplitude. The limitation of current fabric evolution equations in being able to only reflect the proportional coaxial part of the fabric tensor with respect to the loading direction is discussed.

Funder

National Natural Science Foundation of China

Grantová Agentura České Republiky

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3