Choices of medical institutions and associated factors in older patients with multimorbidity in stabilization period in China: A study based on logistic regression and decision tree model

Author:

Wang Xiaoran1ORCID,Zhang Dan1

Affiliation:

1. Institute of Hospital Management, Shenzhen International Graduate School Tsinghua University Shenzhen China

Abstract

AbstractBackgroundAs China's population ages, its disease spectrum is changing, and the coexistence of multiple chronic diseases has become the norm with respect to the health status of its elderly population. However, the health institution choices of older patients with multimorbidity in stabilization period remains underresearched. This study investigate the factors influencing the choices of older patients with multimorbidity to provide references for the rational allocation of healthcare resources.MethodsA multistage, stratified, whole‐group random‐sampling method was used to select eligible older patients from September to December of 2022 who attended the Community Health Service Center of Guangdong Province. We adopted a self‐designed questionnaire to collect patients' general, disease‐related, social‐support information, their intention to choose a healthcare provider. A binary logistic regression and decision tree model based on the Chi‐squared automatic interaction detector algorithm were implemented to analyze the associated factors involved.ResultsA total of 998 patients in stabilization period were included in the study, of which 593 (59.42%) chose hospital and 405 (40.58%) chose primary care. Our binary logistic regression results revealed that age, sex, individual average annual income, educational level, self‐reported health status, activities of daily living, alcohol consumption, family doctor contracting, and family supervision of medication or exercise were the principal factors influencing the choice of medical institutions for older patients with multimorbidity (p < 0.05). The decision‐tree model reflected three levels and 11 nodes, and we screened a total of four influencing factors: activities of daily living, age, a family doctor contract, and patient sex. The data showed that the logistic regression model possessed an accuracy of 72.9% and that the decision tree model exhibited an accuracy of 68.7%. Prediction using the binary logistic regression was thus statistically superior to the categorical decision‐tree model based on the Chi‐squared automatic interaction detector algorithm (Z = 3.238, p = 0.001).ConclusionMore than half of older patients with multimorbidity in stabilization period chose hospitals for healthcare. Efforts should be made to improve the quality of healthcare services and increase the medical contracting rate and recognition of family doctors so as to attract older patients with multimorbidity to primary medical institutions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3