Digital‐Image‐Correlation for Simulating Cyclic Local Buckling in Steel Beams

Author:

Ozden Selimcan1,de Castro e Sousa Albano1,Lignos Dimitrios1

Affiliation:

1. EPFL Ecublens Switzerland

Abstract

AbstractNonlinear continuum finite element (CFE) analyses rely on accurate multiaxial constitutive law formulations along with reliable imperfection patterns for simulating nonlinear geometric instabilities in steel members under mechanical loading. Validations of these models usually rely on conventional measurements of macroscopic parameters (e.g., displacement and strain field). It is common to use global deformation characteristics (e.g., deduced moment versus chord rotation) for model validation purposes of steel members exhibiting inelastic cyclic local buckling. The reason is that measurements from conventional strain gauge readings are not deemed to be reliable well before the onset of local buckling. This is potentially problematic when the accurate prediction of local strain demands is essential. This paper discusses the experimental results from a steel beam instrumented with a digital image correlation (DIC) system and how optical measurements acquired from DIC can be used to benchmark a CFE model representation of this beam. It is shown that while different CFE model types simulate accurately the moment rotation relationship of the steel beam, local strain demand predictions could vary considerably between model types. The results suggest that DIC measurements can inform the selection of proper imperfection patterns to be used in CFE models for the reliable estimation of inelastic strain demands.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

École Polytechnique Fédérale de Lausanne

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3