Design principle of anti‐corrosive photocatalyst for large‐scale hydrogen production

Author:

Gonuguntla Spandana12ORCID,Jaksani Bhavya12ORCID,Jamma Aparna12ORCID,Vennapoosa Chandra Shobha12ORCID,Chatterjee Debabrata3ORCID,Pal Ujjwal12ORCID

Affiliation:

1. Department of Energy & Environmental Engineering CSIR‐Indian Institute of Chemical Technology Hyderabad India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India

3. Vice‐Chancellor's Research Group, Zoology Department University of Burdwan Burdwan India

Abstract

AbstractWith the most advances made so far in terms of photocatalyst design and preparation (inorganic photoredox nanoparticles), researchers of different expertise joined together to address sustainable energy conversion. Despite notable advancements in creating exceptionally active photocatalysts, the practical scalability of these innovations is hindered by issues such as ineffective utilization of solar energy and mass transport, recombination reactions, catalyst instability, and photo corrosion of the catalyst. In this roadmap review, we brief the fundamentals, latest progress, outstanding challenges, and novel design methodology for anticorrosive photocatalysts favorable to large‐scale hydrogen production. To enable the effective scaling of photocatalysis, beyond the inherent activity of photocatalysts, a range of additional factors are considered, with a primary focus on the design of photocatalytic systems. This review underlines the significance of well‐structured photocatalyst design and evaluation for achieving reproducibility and using dependable research methodology for conducting rigorous experiments. The recommendations are directed at reducing the uncertainty surrounding the optimism presented in published research, and we spotlight our recent research advancements. Importantly, the synergistic integration of design principles and research methodologies to enhance the anti‐corrosion properties of photocatalysts may pave the way for a practical technology to utilize solar energy for large‐scale hydrogen production efficiently.This article is categorized under: Sustainable Energy > Solar Energy

Funder

Hindustan Petroleum

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3