Affiliation:
1. Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou China
2. School of New Energy Ningbo University of Technology Ningbo China
3. Molecular Materials and Nanosystems & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
Abstract
AbstractNonfused ring electron acceptors (NFREAs) are promising candidates for future commercialization of organic solar cells (OSCs) due to their simple synthesis. Still, the power conversion efficiencies (PCEs) of NFREA‐based OSCs have large room for improvement. In this work, by merging end group halogenation and side chain engineering, we developed four A–D–A'–D–A type NFREAs, which we refer to as EH‐4F, C4‐4F, EH‐4Cl, and C4‐4Cl. Single crystal X‐ray diffraction revealed that multiple intermolecular S···F interactions between cyclopentadithiophene and 5,6‐difluoro‐3‐(dicyanomethylene)indanone could cause an unfavorable dimer formation, leading to ineffective π–π stackings in EH‐4F and C4‐4F, whereas no such dimer was found in EH‐4Cl and C4‐4Cl after replacing with 5,6‐dichloro‐3‐(dicyanomethylene)indanone. Moreover, although the shorter n‐butyl side chain resulted in a closer molecular packing in C4‐4Cl, EH‐4Cl (2‐ethylhexyl substitution) with proper crystallinity exhibited enhanced face‐on orientation in thin film, which is favorable for vertical charge transport and further reducing charge recombination. As a result, a PCE of 13.0% is obtained for EH‐4Cl‐based OSC with a fill factor of 0.70. This work highlights the importance of molecular packing and orientation control toward future high‐performance A–D–A'–D–A type NFREAs.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Guangdong Innovative and Entrepreneurial Research Team Program
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献