Long‐term organic management: Mitigating land use intensity drawbacks and enhancing soil microbial redundancy

Author:

Paliaga Sara1ORCID,Muscarella Sofia Maria1ORCID,Lucia Caterina1ORCID,Pampinella Daniela1ORCID,Palazzolo Eristanna1ORCID,Badalucco Luigi1ORCID,Badagliacca Giuseppe2ORCID,Laudicina Vito Armando1ORCID

Affiliation:

1. Department of Agriculture, Food and Forest Sciences University of Palermo Palermo Italy

2. Agraria Department Mediterranean University of Reggio Calabria Reggio Calabria Italy

Abstract

AbstractBackgroundSoils under organic farming systems exhibit better quality and higher biological activity than conventional systems. Manure addition, especially coupled with reduced or no tillage, significantly enhances microbial biomass and activity by improving soil physical properties and providing carbon (C) and nitrogen (N) sources. While several studies have examined the effects of transitioning from conventional to organic farming on soil chemistry and biochemistry, limited research has explored the influence of land use variations on soil fertility within long‐term organic farming systems.AimsTherefore, the aim of this study was to assess how three different land uses—pasture, vegetable crops, and orchard—affected soil fertility under a long‐term organic farming system.MethodsSoil samples were collected from the 0 to 15 cm layer of plots used for pasture, vegetable crops and orchard, being the latter cover cropped with legumes, and analyzed to determine chemical and biochemical soil parameters.ResultsContrary to expectations, high land use intensity (vegetable crops and orchard soils) resulted in increased soil organic C and total N, compared to low intensity (pasture). Such an increase was ascribed to farmyard manure addition that counteracted the negative impact of tillage. Consequently, microbial biomass C and activity also increased. The greatest availability of organic substrates favored bacteria, particularly gram‐positive strains, shaping the microbial community. However, despite changes of microbial biomass and of the main microbial groups, microbial activity was only slightly affected, suggesting high functional redundancy of microorganisms in long‐term organic farming soil.ConclusionsResults suggested that if land use intensification provides for organic supply, its negative impact on soil fertility may be mitigated.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3