Biochemical properties of phytase immobilized and its effect on growth parameters of tomato

Author:

Dikbaş Neslihan1ORCID,Alım Şeyma1,Uçar Sevda2,Şenol Kotan Merve1

Affiliation:

1. Agricultural Faculty Department of Agricultural Biotechnology Ataturk University Erzurum Turkey

2. Faculty of Agricultural Sciences and Technology Department of Herbal Production and Technologies Sivas Science and Technology University Sivas Turkey

Abstract

AbstractBackgroundPhosphorus (P) is one of the nonrenewable resources of critical importance in agricultural production. P is present in soil in organic and inorganic forms. Phytate constitutes the majority of organic P in soil. Phytate binds strongly to the solid phase of the soil and becomes unavailable for use by plants. Therefore, the soluble phytate‐P ratio in soil is mostly at very low levels. Plants and associated microorganisms secrete organic acids and hydrolyzing enzymes such as phytase to dissolve phytate in the soil. Both the solubility of phytate and phytase activity are limiting properties for the uptake of phytate‐P by plants.AimsOur aim was to evaluate the effects of phytase immobilized on zinc oxide nanoparticles (ZnO Np) on tomato plant (Solanum lycopersicum) growth parameters. In this study, seedling period was analyzed.MethodsIn the study, phytase activity of 13 different bacteria was investigated, and phytase was purified from Lactobacillus kefiri, showing the highest activity, and its biochemical properties were determined. Phytase was immobilized on zinc oxide (ZnO) nanoparticles and characterized by X‐ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopes analysis. The effects of ZnONps, immobilized phytase, and free phytase on the growth parameters of tomato plant were investigated. Tomato seeds were soaked with ZnONps, immobilized and free phytase for 30 min at room temperature and sown in pots containing suitable growing medium. Vegetative development of tomato plant, plant height, number of lateral branches, main stem diameter, distance between nodes, number of nodes, main root, and shoot length were determined.ResultsPhytase was partially purified with 7.60% recovery and specific activity of 1758.5 (EU mg−1 protein). Molecular mass of partially purified phytase was approx.72 kD, optimum pH and temperature values were determined as pH 5.0 and 70–80°C, respectively. Immobilized phytase caused a significant increase of 41.1% in plant height, 64.1% in main root, and 36.1% in shoot length in tomato plants compared to the control. In addition, a significant increase was observed in the number of side branches, main stem diameter, distance between nodes, number of nodes, and vegetative growth of the plant.ConclusionsThe results showed that the immobilized phytase enzyme has a positive effect on seedling growth in tomato and can be used in tomato cultivation in the future.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3