Enhancing phosphorus availability in biochar: Comparing sulfuric acid treatment to biological acidification approaches

Author:

Kopp Clara1ORCID,Regueiro Iria1ORCID,Stoumann‐Jensen Lars1ORCID,Müller‐Stöver Dorette1ORCID,Fangueiro David2ORCID

Affiliation:

1. Department of Plant and Environmental Science University of Copenhagen Frederiksberg Denmark

2. LEAF Research center Instituto Superior de Agronomia Universidade Lisboa Lisboa Portugal

Abstract

AbstractBackgroundThe use of sulfuric acid (SA) to acidify biochars is known to enhance their phosphorus (P) fertilizer value. Potentially, biological approaches such as lowering the pH of biochar by lactic acid co‐fermentation or applying biochar with a nitrification inhibitor (NI) to reduce rhizosphere pH are an alternative to SA.AimThis study aimed to evaluate the two methods for increasing plant P availability from two biochars and compare them with SA‐treated biochars (as a reference) in a pot experiment.MethodsMeat and bone meal biochar (MB‐C) and digestate solids biochar (DS‐C) were bio‐acidified (BA) by lactic acid fermentation with organic waste. The untreated, SA‐treated, BA biochars, and biochars co‐applied with a NI (3,4‐dimethylpyrazolephosphate) were tested in a pot experiment with maize.ResultsThe fermentation reduced the pH of the organic waste biochar mixtures to <4.3 and increased water‐extractable P (WEP) to 30% of total P. The untreated biochars had a mineral fertilizer replacement value of >50% and SA increased replacement values to ≈100%. The application of NI did not affect rhizosphere pH or P uptake. The BA MB‐C increased soil solution P concentration, but P uptake did not significantly increase. The application of the BA DS‐C raised soil pH and reduced plant P uptake and biomass.ConclusionThe untreated biochars showed considerable P fertilizer effectiveness, suggesting that acidification may not always be necessary. Rhizosphere acidification and the bio‐acidification of biochars were not effective in further increasing P uptake, despite higher levels of WEP.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3