Effect of food simulants on stability of copper oxide in bionanocomposite food packaging film

Author:

Bumbudsanpharoke Nattinee1ORCID,Chongcharoenyanon Busarin1,Harnkarnsujarit Nathdanai1ORCID,Kwon Seongyoung2ORCID,Ko Seonghyuk2ORCID

Affiliation:

1. Department of Packaging and Materials Technology, Faculty of Agro‐Industry Kasetsart University Bangkok Thailand

2. Laboratory of Nano‐Enabled Packaging and Safety, Department of Packaging Yonsei University Wonju‐si Republic of Korea

Abstract

AbstractAddition of copper oxide nanoparticles (CuONPs) to poly (butylene‐adipate‐co‐terephthalate) (PBAT)/thermoplastic starch (TPS) biopolymer blend produced bionanocomposite films with improved mechanical and oxygen barrier properties, as well as enhanced other benefits including antimicrobial activity. In this study, the PBAT/TPS‐CuO bionanocomposite films with varying CuONPs contents (0.05%, 0.5%, 1%, and 2%) were challenged by food simulants (10% ethanol represented to aqueous food and 3% acetic acid represented to acidic food) in accordance with European Regulation 10/2011. CuONPs in the bionanocomposite films demonstrated good stability when exposed to 10% ethanol; however, it was dissolved in 3% acetic acid. The X‐ray diffraction and the energy dispersive spectroscopy results showed that CuONPs in the film were completely lost after acid exposure, whereas CuONPs in the films exposed to 10% EtOH were preserved. The maximum overall migration value was 5.0 mg/dm2. Inductively coupled plasma optical emission spectroscopy was used to confirm the presence of Cu in the simulants. The highest soluble Cu value of 12.39 mg/kg was detected from PBAT/TPS‐CuO2%, while migration value decreased as concentration ratio in film decreased. Although both values were within the threshold limits established by current legislation for non‐specific migration limit substances in food contact materials, the properties of bionanocomposite were altered. The mechanical properties of a post‐migrated PBAT‐TPS/CuO films taken from acidic conditions were reduced by 22% in tensile strength and 53% in elongation at break due to holes and microcracks on the film surface observed by scanning electron microscope. The average sealing strength of all bionanocomposite films decreased by about 25% after acid exposure. The oxygen permeability, on the other hand, was significantly improved, with a 16.3% reduction. Because the film had lost all of its active agent, film was unable to inhibit Escherichia coli growth. While 3% acetic acid caused dissolution of CuONPs and significant changes in properties of PBAT/TPS‐CuO film, 10% ethanol caused very minor to no changes in bionanocomposite film properties.

Funder

Kasetsart University Research and Development Institute

Publisher

Wiley

Subject

Mechanical Engineering,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3