Distributed optimal control of nonlinear multi‐agent systems based on integral reinforcement learning

Author:

Xu Ying1,Li Kewen1,Li Yongming1ORCID

Affiliation:

1. College of Science Liaoning University of Technology Jinzhou China

Abstract

AbstractIn this article, a distributed optimal control approach is proposed for a class of affine nonlinear multi‐agent systems (MASs) with unknown nonlinear dynamics. The game theory is used to formulate the distributed optimal control problem into a differential graphical game problem with synchronized updates of all nodes. A data‐based integral reinforcement learning (IRL) algorithm is used to learn the solution of the coupled Hamilton–Jacobi (HJ) equation without prior knowledge of the drift dynamics, and the actor‐critic neural networks (A‐C NNs) are used to approximate the control law and the cost function, respectively. To update the parameters synchronously, the gradient descent algorithm is used to design the weight update laws of the A‐C NNs. Combining the IRL and the A‐C NNs, a distributed consensus optimal control method is designed. By using the Lyapunov stability theory, the developed optimal control method can show that all signals in the considered system are uniformly ultimately bounded (UUB), and the systems can achieve Nash equilibrium when all agents update their controllers simultaneously. Finally, simulation results are given to illustrate the effectiveness of the developed optimal control approach.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3