Biochemical responses and antioxidant defense mechanisms in Channa Striatus exposed to Bisphenol S

Author:

Mohan Sini1,Jacob Jubi1,Malini Nair Achuthan1ORCID,Prabhakar Reshma1,Kayalakkakathu Roy George1

Affiliation:

1. Post‐Graduate and Research Department of Zoology St. Thomas College Kozhencherry Kerala India

Abstract

AbstractBisphenol S (BPS), a BPA analog and a safer alternative, is utilized in a diverse range of industrial applications, such as making polycarbonate plastics, epoxy resins, thermal receipt papers, and currency bills. Recently, the increased use of BPS in containers and packages for daily life has been interrogated due to its identical chemical structure and probable endocrine‐disrupting actions as BPA has. The present study aimed to evaluate the alterations in biochemical indices and antioxidant enzymes as certain indicators of the endocrine‐disrupting effect of BPS in Channa striatus, a freshwater fish. BPS‐exposed fish species were subjected to three sub‐lethal concentrations of BPS (1, 4, and 12 ppm) and observed after an interval of 7 and 21 days. Exposure to BPS caused a reduction in the level of protein in muscle, gonads and the liver due to an impairment of protein synthesis. Levels of cholesterol in the muscle, gonads, and liver of BPS‐exposed fish were found to be decreased after treatment, indicating either an inhibition of cholesterol biosynthesis in the liver or reduced absorption of dietary cholesterol. The levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase showed remarkable increases, while the activity of glutathione S‐transferase decreased considerably, indicating the antioxidant defense mechanism to counteract the oxidative stress induced by BPS. Moreover, a significant increase was noted in the level of lipid peroxidation products, like malondialdehyde and conjugate diene, which represent biomarkers of oxidative stress. The histoarchitecture changes were also observed in the liver, muscle and gonads of BPS‐treated fish species. The present study showed that sub‐lethal exposure to BPS significantly influenced the activities of these enzymes and peroxidation byproducts. From this study, it is concluded that BPS‐caused toxic effects in fish species lead to an imbalance in the antioxidant defense system. It is clearly indicated that BPS toxicity could lead to susceptible oxidative stress in various tissues and could damage vital organs.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3