Complex Droplet Microreactor for Highly Efficient and Controllable Esterification and Cascade Reactions

Author:

Wei Duo1,Yin Nuoqing1,Xu Dehua1,Ge Lingling1ORCID,Gao Zihan1,Zhang Yanyan2,Guo Rong1

Affiliation:

1. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225009 People's Republic of China

2. Testing Center Yangzhou University Yangzhou 225009 People's Republic of China

Abstract

AbstractA highly efficient complex emulsion microreactor has been successfully developed for multiphasic water‐labile reactions, providing a powerful platform for atom economy and spatiotemporal control of reaction kinetics. Complex emulsions, composing a hydrocarbon phase (H) and a fluorocarbon phase (F) dispersed in an aqueous phase (W), are fabricated in batch scale with precisely controlled droplet morphologies. A biphasic esterification reaction between 2‐bromo‐1,2‐diphenylethane‐1‐ol (BPO) and perfluoro‐heptanoic acid (PFHA) is chosen as a reversible and water‐labile reaction model. The conversion reaches up to 100 % under mild temperature without agitation, even with nearly equivalent amounts of reactants. This efficiency surpasses all reported single emulsion microreactors, i. e., 84~95 %, stabilized by various emulsifiers with different catalysts, which typically necessitate continuous stirring, a high excess of one reactant, and/or extended reaction time. Furthermore, over 3 times regulation threshold in conversion rate is attained by manipulating the droplet morphologies, including size and topology, e. g., transition from completely engulfed F/H/W double to partially engulfed (F+H)/W Janus. Addition‐esterification, serving as a model for triple phasic cascade reaction, is also successfully implemented under agitating‐free and mild temperature with controlled reaction kinetics, demonstrating the versatility and effectiveness of the complex emulsion microreactor.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3