Disordered Au Nanoclusters for Efficient Ammonia Electrosynthesis

Author:

Peng Xianyun12,Zhang Rui3,Mi Yuying4,Wang Hsiao‐Tsu56,Huang Yu‐Cheng6,Han Lili13,Head Ashley R.7,Pao Chih‐Wen8,Liu Xijun9,Dong Chung‐Li6,Liu Qian10,Zhang Shusheng11,Pong Way‐Faung6,Luo Jun4,Xin Huolin L.3ORCID

Affiliation:

1. State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China

2. Institute of Zhejiang University – Quzhou Zhejiang Quzhou 324000 P. R. China

3. Department of Physics and Astronomy University of California Irvine CA 92697 USA

4. Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 P. R. China

5. Bachelor's Program in Advanced Materials Science Tamkang University New Taipei City 25137 Taiwan

6. Department of Physics Tamkang University New Taipei City 251301 Taiwan

7. Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA

8. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

9. MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials Guangxi University Guangxi Nanning 530004 P. R. China

10. Institute for Advanced Study Chengdu University Sichuan Chengdu 610106 P. R. China

11. College of Chemistry Zhengzhou University Henan Zhengzhou 450000 P. R. China

Abstract

AbstractThe electrochemical nitrogen (N2) reduction reaction (N2RR) under mild conditions is a promising and environmentally friendly alternative to the traditional Haber‐Bosch process with high energy consumption and greenhouse emission for the synthesis of ammonia (NH3), but high‐yielding production is rendered challenging by the strong nonpolar N≡N bond in N2 molecules, which hinders their dissociation or activation. In this study, disordered Au nanoclusters anchored on two‐dimensional ultrathin Ti3C2Tx MXene nanosheets are explored as highly active and selective electrocatalysts for efficient N2‐to‐NH3 conversion, exhibiting exceptional activity with an NH3 yield rate of 88.3±1.7 μg h−1 mgcat.−1 and a faradaic efficiency of 9.3±0.4 %. A combination of in situ near‐ambient pressure X‐ray photoelectron spectroscopy and operando X‐ray absorption fine structure spectroscopy is employed to unveil the uniqueness of this catalyst for N2RR. The disordered structure is found to serve as the active site for N2 chemisorption and activation during the N2RR process.

Funder

Office of Science

Brookhaven National Laboratory

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3