Addressing the Reuse of Deep Eutectic Solvents in Li‐Ion Battery Recycling: Insights into Dissolution Mechanism, Metal Recovery, Regeneration and Decomposition

Author:

Svärd Michael1,Ma Chunyan1,Forsberg Kerstin1,Schiavi Pier Giorgio2ORCID

Affiliation:

1. KTH Royal Institute of Technology Department of Chemical Engineering Teknikringen 42 SE-10044 Stockholm Sweden

2. Sapienza University of Rome Department of Chemistry Piazzale Aldo Moro n.5 00185 Rome Italy

Abstract

AbstractDeep eutectic solvents (DESs) have garnered attention in Li‐ion battery (LIB) recycling due to their declared eco‐friendly attributes and adjustable metal dissolution selectivity, offering a promising avenue for recycling processes. However, DESs currently lack competitiveness compared to mineral acids, commonly used in industrial‐scale LIB recycling. Current research primarily focuses on optimizing DES formulation and experimental conditions to maximize metal dissolution yields in standalone leaching experiments. While achieving yields comparable to traditional leaching systems is important, extensive DES reuse is vital for overall recycling feasibility. To achieve this, evaluating the metal dissolution mechanism can assist in estimating DES consumption rates and assessing process makeup stream costs. The selection of appropriate metal recovery and DES regeneration strategies is essential to enable subsequent reuse over multiple cycles. Finally, decomposition of DES components should be avoided throughout the designed recycling process, as by‐products can impact leaching efficiency and compromise the safety and environmental friendliness of DES. In this review, these aspects are emphasized with the aim of directing research efforts away from simply pursuing the maximization of metal dissolution efficiency, towards a broader view focusing on the application of DES beyond the laboratory scale.

Funder

Svenska Forskningsrådet Formas

Energimyndigheten

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3