High Formate Selectivity and Deactivation Mechanism of CuS Nanoparticles in CO2 Electrocatalytic Reduction Reaction

Author:

Wang Min1,Li Xiaoyao1,Ma Xia1,Wang Jie1,Jin Xixiong1,Zhang Lingxia123ORCID,Shi Jianlin12

Affiliation:

1. Institution Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Ding-xi Road Shanghai 200050 P.R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences No. 19 A Yuquan Road Beijing 100049 P.R. China

3. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P.R. China

Abstract

AbstractCO2 electroreduction into liquid fuels is of broad interest and benefits reducing the energy crisis and environment burdens. CuS has been reported to be a desirable candidate for CO2 electroreduction into formate; however, its formate selectivity and stability are still far from the demands of practical application. Herein, we report CuS nanoparticles exhibiting good Faradaic efficiency of formate (about 98 %) in CO2 electroreduction and its deactivation mechanism during the reaction. The deactivation of CuS was found to be associated with the reconstruction and S loss of CuS, which deteriorates the Faradaic efficiency of formate. Combined with ionic and gas analyses, the S atom in CuS was lost in the form of H2S, SO2, and SO42−, followed by the reconstruction of CuS into copper oxides. Such a catalyst reconstruction facilitates electroreductions of CO2 and H2O, respectively, into CO and H2, etc., resulting in the degradation of catalytical performance of CO2 electroreduction into formate. This work reveals the important role of S loss and reconstruction of metal sulfide catalysts during the electroreduction reaction, which may benefit the further development of CuS‐based electro‐catalyst for CO2 electroreduction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3