Tailoring Pore Size and Catalytic Activity in Cobalt Iron Layered Double Hydroxides and Spinels by Microemulsion‐Assisted pH‐Controlled Co‐Precipitation

Author:

Rabe Anna12ORCID,Jaugstetter Maximilian3,Hiege Felix3,Cosanne Nicolas2,Ortega Klaus Friedel2,Linnemann Julia3ORCID,Tschulik Kristina3,Behrens Malte124ORCID

Affiliation:

1. Faculty of Chemistry University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE) Universitätsstr. 7 45141 Essen Germany

2. Institute for Inorganic Chemistry Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 2 24118 Kiel Germany

3. Faculty of Chemistry and Biochemistry, Analytical Chemistry II Ruhr University Bochum 44801 Bochum Germany

4. Ertl Center for Electrochemistry and Catalysis Gwangju Institute of Science (GIST) 123 Cheomdan-gwagiro (Oryang-dong), Buk-gu Gwangju 500-712 South Korea

Abstract

AbstractCobalt iron containing layered double hydroxides (LDHs) and spinels are promising catalysts for the electrochemical oxygen evolution reaction (OER). Towards development of better performing catalysts, the precise tuning of mesostructural features such as pore size is desirable, but often hard to achieve. Herein, a computer‐controlled microemulsion‐assisted co‐precipitation (MACP) method at constant pH is established and compared to conventional co‐precipitation. With MACP, the particle growth is limited and through variation of the constant pH during synthesis the pore size of the as‐prepared catalysts is controlled, generating materials for the systematic investigation of confinement effects during OER. At a threshold pore size, overpotential increased significantly. Electrochemical impedance spectroscopy (EIS) indicated a change in OER mechanism, involving the oxygen release step. It is assumed that in smaller pores the critical radius for gas bubble formation is not met and therefore a smaller charge‐transfer resistance is observed for medium frequencies.

Funder

Deutsche Forschungsgemeinschaft

Mercator Research Center Ruhr

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3