Computational Investigation of Carbon Based Anode Materials for Li‐ and Post‐Li‐ Ion Batteries

Author:

Azizi Jafar1,Groß Axel12,Euchner Holger3ORCID

Affiliation:

1. Institute of Theoretical Chemistry Ulm University, D- 89081 Ulm

2. Helmholtz Institute Ulm for Electrochemical Energy Storage, D- 89081 Ulm

3. Institute of Physical and Theoretical Chemistry University of Tübingen 72076 Tübingen Germany

Abstract

AbstractDue to its negligible capacity with respect to sodium intercalation, graphite is not suited as anode material for sodium ion batteries. Hard carbon materials, on the other hand, provide reasonably high capacities at low insertion potential, making them a promising anode materials for sodium (and potassium) ion batteries. The particular nanostructure of these functionalized carbon‐based materials has been found to be crucially linked to the material performance. However, there is still a lack of understanding with respect to the functional role of structural units, such as defects, for intercalation and storage. To overcome these problems, the intercalation of Li, Na, and K in graphitic model structures with distinct defect configurations has been investigated by density functional theory. The calculations confirm that defects are able to stabilize intercalation of larger alkali metal contents. At the same time, it is shown that a combination of phonon and band structure calculations are able to explain characteristic Raman features typically observed for alkali metal intercalation in hard carbon, furthermore allowing for the quantification of the alkali metal intercalation inbetween the layers of hard carbon anodes.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3