Outstanding Compatibility of Hard‐Carbon Anodes for Sodium‐Ion Batteries in Ionic Liquid Electrolytes

Author:

Maresca Giovanna12ORCID,Petrongari Angelica3,Brutti Sergio3,Battista Appetecchi Giovanni1

Affiliation:

1. Materials and Physicochemical Processes Technical Unit (SSPT-PROMAS- MATPRO) ENEA Via Anguillarese 301 00123 Rome Italy

2. Department of Basic and Applied Sciences of Engineering La Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy

3. Department of Chemistry La Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy

Abstract

AbstractHard carbons (HC) from natural biowaste have been investigated as anodes for sodium‐ion batteries in electrolytes based on 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide ([EMI][FSI]) and N‐trimethyl‐N‐butylammonium bis(fluorosulfonyl)imide ([N1114][FSI]) ionic liquids. The Na+ intercalation process has been analyzed by cyclic voltammetry tests, performed at different scan rates for hundreds of cycles, in combination with impedance spectroscopy measurements to decouple bulk and interfacial resistances of the cells. The Na+ diffusion coefficient in the HC host has been also evaluated via the Randles‐Sevcik equation. Battery performance of HC anodes in the ionic liquid electrolytes has been evaluated in galvanostatic charge/discharge cycles at room temperature. The evolution of the SEI (solid electrochemical interface) layer grown on the HC surface has been carried out by Raman spectroscopy. Overall the sodiation process of the HC host is highly reversible and reproducible. In particular, a capacity retention exceeding 98 % of the initial value has been recorded in[N1114][FSI] electrolytes after more than 1500 cycles with a coulombic efficiency above 99 %, largely beyond standard carbonate‐based electrolytes. Raman, transport properties and impedance confirms that ILs disclose the formation of SEI layers with superior ability to support the reversible Na+ intercalation with the possible minor contributions from the EMI+cation.

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3