Effect of Gas Composition on Temperature and CO2 Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation

Author:

Xu Wencong123,Van Alphen Senne2,Galvita Vladimir V.3,Meynen Vera1,Bogaerts Annemie2ORCID

Affiliation:

1. Department of Chemistry Research group LADCA University of Antwerp Universiteitsplein 1 B-2610 Wilrijk Antwerp Belgium

2. Department of Chemistry Research group PLASMANT University of Antwerp Universiteitsplein 1 B-2610 Wilrijk Antwerp Belgium

3. Department of Materials Textiles and Chemical Engineering Research group LCT Ghent University Technologiepark 125 B-9052 Ghent Belgium

Abstract

AbstractPlasma‐based CO2 conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N2, N2/CH4 and N2/CH4/H2O to a CO2 gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N2 improves the CO2 conversion from 4 % to 13 %, and CH4 addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H2O, however, reduces the CO2 conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N2 addition increases the temperature, while the CO2/CH4 ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.

Funder

Universiteit Gent

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3