Alkaline Ni−Zn Rechargeable Batteries for Sustainable Energy Storage: Battery Components, Deterioration Mechanisms, and Impact of Additives

Author:

Bogomolov Katerina1,Ein‐Eli Yair12ORCID

Affiliation:

1. Department of Materials Science and Engineering Technion – Israel Institute of Technology Haifa 3200003 Israel

2. The Nancy & Stephan Grand Technion Energy Program (GTEP) Technion – Israel Institute of Technology Haifa 3200003 Israel

Abstract

AbstractThe demand for long‐term, sustainable, and low‐cost battery energy storage systems with high power delivery capabilities for stationary grid‐scale energy storage, as well as the necessity for safe lithium‐ion battery alternatives, has renewed interest in aqueous zinc‐based rechargeable batteries. The alkaline Ni−Zn rechargeable battery chemistry was identified as a promising technology for sustainable energy storage applications, albeit a considerable investment in academic research, it still fails to deliver the requisite performance. It is hampered by a relatively short‐term electrode degradation, resulting in a decreased cycle life. Dendrite formation, parasitic hydrogen evolution, corrosion, passivation, and dynamic morphological growth are all challenging and interrelated possible degradation processes. This review elaborates on the components of Ni−Zn batteries and their deterioration mechanisms, focusing on the influence of electrolyte additives as a cost‐effective, simple, yet versatile approach for regulating these phenomena and extending the battery cycle life. Even though a great deal of effort has been dedicated to this subject, the challenges remain. This highlights that a breakthrough is to be expected, but it will necessitate not only an experimental approach, but also a theoretical and computational one, including artificial intelligence (AI) and machine learning (ML).

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

Reference188 articles.

1. Rechargeable Batteries for Grid Scale Energy Storage

2. Electrochemical Energy Storage for Green Grid

3. What if we never run out of oil? From certainty of “peak oil” to “peak demand”

4. J. Varela Sanz B. Achtez F. Al Shakarchi A. Hentunen L. Lanuzza P. Nguyen J. Olarte L. Zubizarreta A. Schmidt N. Guillet A. Nekrasov M. Serra M. Vetter A. Krupp F. Schuldt B. Fassler M. Kanninen L. Lanuzza A. Marinopoulos M. Montaru E. Domínguez Amarillo A. Belinchon C. Dodge-Lamm T. Dollfus B. Fassler H. Guillaume K. Sidi-Ali-Cherif G. Fernandez Aznar J. Carlos F. Di Persio E. Lemaire J. Gilabert Marzal M. Messagie L. Vinit M. Guarnieri J. Fabri M. Fedeli A. Igartua Roadmap on Stationary Applications for Batteries2022 European Technology and Innovation Platform on Batteries – Batteries Europe working group 6 (53 pages in total) https://energy.ec.europa.eu/system/files/2022-01/vol-6-009.pdf (accessed on Oct. 31 2023).

5. A promising energy storage system: rechargeable Ni–Zn battery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3