Anodic Oxidation of Methanol to Formaldehyde Synergizing with a Br/Br2 Redox‐Mediated Chemical Route to Produce Methyl Formate

Author:

Wang Ke‐An1,Wang Zhen‐Long1,Zhu Hai‐Bin1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China Southeast University Jiangning District Nanjing Jiangsu Province China

Abstract

AbstractMethyl formate (MF) is one of the most important chemical commodities, which has a wide range of applications. Due to environmental friendliness, mild reaction conditions, and easy operations, electrosynthesis of MF has garnered increasing attention in recent years. In this work, we reported an electrosynthesis route toward MF in a halide‐containing methanol solution. The thorough mechanistic investigations point out that electrosynthesis of MF is accomplished by instant reaction between aldehyde from anodic methanol oxidation, and methoxy bromide (CH3OBr) that is in‐situ generated by reaction of Br2 from anodic oxidation of Br with methoxide (CH3O) from cathodic reduction of methanol. This method features high atomic economy only producing valuable MF and hydrogen gas, and shows distinct advantages compared to the reported MF electrosynthesis methods. Even at 200 mA/cm2, the faradaic efficiency (FE) of MF remains consistently around 60 % at the anode while a 100 % FE hydrogen gas is produced at the cathode.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3