Modulating Electron Density of Ni‐N‐C Sites by N‐doped Ni for Industrial‐level CO2 Electroreduction in Acidic Media

Author:

Zhang Jiaji12,Lin Gaobo12,Zhu Jie12,Wang Sifan12,Zhou Wenhua12,Lv Xiangzhou3,Li Bolong12,Wang Jianghao12ORCID,Lu Xiuyang12,Fu Jie12ORCID

Affiliation:

1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310058 P. R. China

2. Institute of Zhejiang University-Quzhou 99 Zheda Road Quzhou 324000 P. R. China

3. Institute for Composites Science Innovation (InCSI) School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310058 P. R. China

Abstract

AbstractElectro‐chemically reducing CO2 in a highly acidic medium is promising for addressing the issue of carbonate accumulation. However, the hydrogen evolution reaction (HER) typically dominates the acidic CO2 reduction. Herein, we construct an efficient electro‐catalyst for CO formation based on a core‐shell structure, where nitrogen‐doped Ni nanoparticles coexist with nitrogen‐coordinated Ni single atoms. The optimal catalyst demonstrates a significantly improved CO faradaic efficiency (FE) of 96.7 % in the acidic electrolyte (pH=1) at an industrial‐scale current density of 500 mA cm−2. Notably, the optimal catalyst maintains a high FE of CO exceeding 90 % (current density=500 mA cm−2) in the electrolyte with a wide pH range from 0.67 to 14. In‐situ spectroscopic characterization and density functional theory calculations show that the local electron density of Ni‐N‐C sites is enhanced by N‐doped Ni particles, which facilitates the formation of *COOH intermediate and the adsorption of *CO. This study demonstrates the potential of a hybrid metal/Ni‐N‐C interface in boosting acidic CO2 electro‐reduction.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3