Reconsidering Anode Materials for Fluoride‐Ion Batteries–The Unexpected Roles of Carbide Formation**

Author:

McTaggart Don1,Warren Scott C.1,Clemens Oliver2ORCID

Affiliation:

1. Department of Chemistry, Kenan Lab A808 University of North Carolina at Chapel Hill Chapel Hill NC 27514-3290 United States of America

2. Institute for Materials Science, Materials Synthesis Group University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany

Abstract

AbstractCarbon is a ubiquitous additive to enhance the electrical conductivity of battery electrodes. Although carbon is generally assumed to be inert, the poor reversibility seen in some fluoride‐ion battery electrodes has not been explained or systematically explored. Here, we utilize the Materials Project database to assess electrode deactivation reactions that result in the formation of a metal carbide. Specifically, we compare the theoretical potentials of MFy reduction to either the corresponding metal M or metal carbide MCx. We find that the formation of MCx is unlikely to be important in anodes that operate at modest reduction potentials, such as those made from electronegative metals like Zn, Sn, or Pb. However, in anodes that operate at extreme reduction potentials, such as alkaline earths or lanthanides, we find that formation of MCx is relevant and can emerge as a mechanism for capacity loss. Thus, side reactions of metals with carbon additives that form metal carbides possibly explain the poor reversibility of lanthanide or alkaline earth metal‐based electrode materials. Finally, we highlight that the carbide formation process might be exploited for designing cheap anode systems with improved reversibility.

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3