Biomass Source Influence on Hydrogen Production through Pyrolysis and in Line Oxidative Steam Reforming

Author:

Garcia Irati1,Lopez Gartzen12ORCID,Santamaria Laura1ORCID,Fernandez Enara1,Bilbao Javier1,Olazar Martin1,Artetxe Maite1,Amutio Maider1

Affiliation:

1. Department of Chemical Engineering University of the Basque Country UPV/EHU P.O. Box 644 E48080 Bilbao Spain

2. IKERBASQUE Basque Foundation for Science Bilbao Spain

Abstract

AbstractThis study evaluates the potential of several biomasses differing in nature and composition for their valorization by pyrolysis and in line oxidative steam reforming. The first task involved the fast pyrolysis of the biomasses in a conical spouted bed reactor (CSBR) at 500 °C, in which product yields were analyzed in detail. Then, the oxidative steam reforming (OSR) of pyrolysis volatiles (gases and bio‐oil) was approached in a fluidized bed reactor (FBR). The reforming experiments were performed at 600 °C, with a steam/biomass (S/B) ratio of 3 and catalyst (Ni/Al2O3) space times of 7.5 and 20 gcat min gvol−1. Concerning equivalence ratio (ER), a value of 0.12 was selected to ensure autothermal operation. Remarkable differences were observed in H2 production depending on the type of biomass. Thus, pine wood led to a H2 production of 9.3 wt %. The lower productions obtained with rice husk (7.7 wt %) and orange peel (5.5 wt %) are associated with their higher ash and fixed carbon content, respectively, which limit the efficiency of biomass conversion to bio‐oil. However, in the case of the microalgae, the poor performance observed is because of the lower conversion in the reforming step toward gases due to the composition of its pyrolysis volatile stream.

Funder

Eusko Jaurlaritza

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3