Self‐Modification of Defective TiO2 under Controlled H2/Ar Gas Environment and Dynamics of Photoinduced Surface Oxygen Vacancies

Author:

Tjardts Tim1ORCID,Elis Marie2ORCID,Shondo Josiah1ORCID,Voß Lennart2,Schürmann Ulrich23,Faupel Franz13ORCID,Kienle Lorenz23ORCID,Veziroglu Salih13ORCID,Aktas Oral Cenk1ORCID

Affiliation:

1. Chair for Multicomponent Materials Department of Materials Science Kiel University Faculty of Engineering Kaiserstraße 2 24143 Kiel Germany (Dr. Salih Veziroglu) (Prof. Dr.-Ing. Oral Cenk Aktas

2. Synthesis and Real Structure Department of Materials Science Kiel University Faculty of Engineering Kaiserstraße 2 24143 Kiel Germany

3. Kiel Nano Surface and Interface Science KiNSIS Kiel University Christian Albrechts-Platz 4 24118 Kiel Germany

Abstract

AbstractIn recent years, defective TiO2 has caught considerable research attention because of its potential to overcome the limits of low visible light absorption and fast charge recombination present in pristine TiO2 photocatalysts. Among the different synthesis conditions for defective TiO2, ambient pressure hydrogenation with the addition of Ar as inert gas for safety purposes has been established as an easy method to realize the process. Whether the Ar gas might still influence the resulting photocatalytic properties and defective surface layer remains an open question. Here, we reveal that the gas flow ratio between H2 and Ar has a crucial impact on the defective structure as well as the photocatalyic activity of TiO2. In particular, transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS) revealed a larger width of the defective surface layer when using a H2/Ar (50 %–50 %) gas mixture over pure H2. A possible reason could be the increase in dynamic viscosity of the gas mixture when Ar is added. Additionally, photoinduced enhanced Raman spectroscopy (PIERS) is implemented as a complementary approach to investigate the dynamics of the defective structures under ambient conditions which cannot be effortlessly realized by vacuum techniques like TEM.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3